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1. INTRODUCTION

When the stored energy function for an elastic material is not globally rank-l convex as a
function of the deformation gradient, then equilibrium configurations which possess a
discontinuous strain field are possible. In fact, in some applications, a configuration of this
sort is determined as one which minimizes the total potential energy of the system, and in
such a case the resulting state of the body is said to possess multiple coexistent phases. The
strain field in these coexistent phases may be uniform or nonuniform, but in all cases they
are separated by surfaces across which the strain itself is discontinuous: Such surfaces are
called phase boundaries.

In 1975, Bricksen[l] made the novel observation, within the context ofone-dimensional
elasticity theory, that a bar in tension can have stable equilibrium states with discontinuous
strain fields when the stored energy function is not convex. Shortly thereafter, James[2]
magnified upon this idea for elastic bar theory, and almost coincidently Dunn and
Fosdick[3] considered analogous questions and relationships between continuum thermo­
dynamics, Gibbsian thermostatics, and the stability of material phases. This latter workt
was concerned to some extent with the question of existence, uniqueness and detailed
structure ofminimizers to various problems from thermostatics, and it introduced the idea
of "uniqueness to withih rearrangement" and related this idea to the Gibbs phase rule for
a single component system.

Since the mid-seventies, there have been many papers written on questions of mini­
mization within the context of mechanics for a material with a nonconvex stored energy
function. Specific problems include the pure bending and postbuckling behavior of an
elastica[5, 6], the finite twisting of an elastic tube[7] and the helical shear of an elastic
tuberS].

In the present work we shall consider another specific and elementary minimization
problem in which the nonconvexity of the stored energy function manifests itselfas a novel
phenomenon. In particular, in this problem an elastic layer is bonded between two infinite
parallel rigid plates and the plates are rotated in the same sense through the same angle
about distinct axes normal to the plates. In general the shear that is thereby induced in the
layer is expected to correspond to the relative rotation of planes ofmaterial throughout the
thickness of the layer and about centers which are dependent upon the position of these
planes. In certain situations we find the locus of these centers to be a straight line, and in
others we show that it is composed of continuous straight line segments each having pne

t A summary of this work can be found in [4].
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of two distinct slopes. In this latter case there is considerable nonuniqueness with respect
to how the combination of straight line segments may be arranged without affecting the
energy of the system. The general structure of all minimizers in this problem is completely
determined.

2. SETTING THE PROBLEM

Consider a plane layer of elastic, incompressible, isotropic and homogeneous material
B of thickness 2h which is bonded between two infinite parallel rigid plates, and identify B
with the region of space defined by the rectangular Cartesian coordinates x Ie ( - 00, 00),
X2e(-00,00), x3e(-h,h). The layer is said to undergo a staggered axis twist if the
deformation (x/) -t (y/) measured relative to a fixed coordinate system has the form (cf.
Rajagopal and Wineman[9])

YI == (xI-/I(X3» cos 0-(x2-/2(x3» sin 0+/I(x3)'

Y2 == (xI-/I(X3» sin 0+ (x2-/2(x3» cos 0+/2(x3), (1)

where, it should be noted, we have introduced in (lh the more convenient notation Z for
X3' This deformation has the property that every plane Z == constant is rotated through the
same constant prescribed angle Oe[O,27t) about an axis parallel to the z-coordinate line,
which has its center of rotation located at the point (/1 (z) 12(z), z). The locus ofthese centers
of rotation for ze( -h, h) generates a spatial curve which, if known, would completely
define the deformation.

In a recent paper, Rajagopal and Wineman[9] considered the possibility ofdetermining
those continuous functions II and 12 which lead to equilibrated states, and they found that
deformation fields wherein the derivativesII and 15. are discontinuous were possible. Their
work was not concerned with questions ofminimization or stability, but rather was centered
on the notion ofequilibrium. Two elementary facts, observed in [9], are relevant here: First,
the deformation is isochoric for aU forms ofII and 12, and second, the principal invariants
of either the right or left Cauchy-Green strain tensor are given by

I == II == 3+[K(ZW,

where the shear K(Z) is defined by

III == 1, (2)

K(Z) E 2[[/; (zW+ [f2(zWjl/2 sin (0/2) ~ O.

It is convenient in this work to introduce the pair of strains 8 E (6 h 62), where

(3)

6a(Z) E 21:(z) sin (0/2),

so that (3) may be written as

K == 181.

(X == 1,2, (4)

In this case, the stored energy density per unit volume of the material has the following
forms:

W== W(I,il) == W(3+K 2,3+K2
)

== W(K)

== W(s).

(5)
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We shall suppose that W: [O,P) -+ Ill, where 0 < P:s;; 00, so that W: ~ -+ R, where
~ == {se III 2 Ilsi < Pl. Clearly, W{ -s) = W(a).

The shear stress is given by

dW(K) _/
t(K) == -d- == W (K),

K

and it follows that

where

Jl(K) = 2{aW(I,Il) + aW(I,Il)}\ .
01 all 1_11_ 3+,,2

In addition, we also have

W.(s) = Jl(K)S,

(6)

(7)

(8)

(9)

where the subscript 8 denotes the gradient operation.
In this work we shall require Wand 't to behave in the manner as depicted in Figs. 1

and 2. More precisely, we shall impose:
(i) 't is class C2

•

(ii) There exists KI and K2 with 0 < KI < K2 < Psuch that

(a) 't/(K) = 't/(K2) = 0,

(b) 't/(K»O V'Ke[0,K\)U(K2'P),

't/(K) < 0 V'Ke(K\>K2)'

(iii) There exists K3 and K4 with 0 < K3 < K\ < K2 < K4 < Psuch that

(a) 't(K3) = 't(K4) == 'te>

(b) W(K4)- W(K3) = t.(K4-K3)'

In words, the above three conditions require Wto be sufficiently smooth, convex in the

k3 k 1 k2 k4 k

Fig. I. The stored energy as a function of shear.
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Fig. 2. The shear stress as a function of shear.

K

domain [0, 1(3]U[1(4, (J) and not convex over the interval (1(3' 1(4)' The values 1(1 and K2

correspond to points in the interval (1(3, 1(4) where local convexity breaks down. The points
11:3 and 11:4 are the extremities of the so-called Maxwell equal area line.

In the remainder of this work we shall consider an energy method to determine those
deformations of the form (1) for which 11(z) and 12(z) are prescribed at z = ±h. For this
purpose, then, we first introduce the total potential energy functional for the elastic layer
per unit cross-sectional area, i.e.

I[a] = fh W(I(z»dz = fh W(a(z»dz, (10)

where I( and 8 are given in (3) and (4). Also, it is helpful to observe that because of (4), we
have

fhs(z)dz = 2[f(h)-f( -h)] sin (0/2) == 4, (11 )

where A is a prescribed pair of numbers. Finally, then, the minimization problem which we
shall consider is

minimize I [a],
leJII

where the class .III of admissible strains is given by

.III == {s:( -h,h) -+ gj}ls is piecewise continuous, fh a(z)dz = 4}.

(12)

3. ANALYSIS OF THE VARIATIONAL PROBLEM; STRUCTURE OF SOLUTIONS

The variational problem (10), (12) is of a standard type and, thus, we shall simply
record, without proof, the usual necessary conditions of Euler-Lagrange and Weierstrass
for the existence of a minimizer. We shall then show that these necessary conditions are
also sufficient for existence by constructing all possible solutions.

Suppose throughout this section that aed is a minimizer of (10), (12). Then, on
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subintervals of (- h, h) over which £ is continuous, the Euler-Lagrange equation has the
form

Jl(K(Z»£(Z) = c, (13)

where c = (c" C2) is constant. Moreover, as a further consequence of the first variation
condition it can be shown that the left-hand side of (13) has zero jump at points where £ is
discontinuous. Thus, the constant c is the same for all Z E (-h, h), and if one is seeking a
minimizer, it must necessarily solve the Euler-Lagrange boundary value problem which
consists in identifying any member of.91 which satisfies (13).

The necessary condition of Weierstrass for the problem (10), (12) has the form

(14)

which is to hold for all points ZE (-h, h) at which I(Z) is continuous, and for all II E~.
Thus, a minimizer £ must be such that its values £(z) at any point of continuity Z E ( - h, h)
is also a point in ~ at which JJi' is convex. Equivalently, by Lemma 1.1 of Fosdick and
MacSithigh[8], it follows that at any such point ofcontinuity, K(Z) = II(z)1must be associated
with a point of convexity of Win [0, p) at which W'(K(Z» is nonnegative, i.e.

W'(K(Z» ~ 0, (15)

for all K 1 E [0, P). From Fig. I we see that this requires that the range of the shear K for any
minimizer is restricted to the set [0, K3] U [K4' P).

We now have the minimization
THEOREM. Suppose lEd is a solution of(13) which satisfies (14) (or equivalently (15».

Then, among all other a· E.9I,

8[a·] ~ 8[a].

Proof From (9) and (13) we see that

W.(£(Z» = Jl(K(z»a(z) = c,

and this, in tum, yields

fh W.(a(z»· [£·(z)-£(z)]dz =c' fh [£·(Z)-I(Z)] dz = 0,

(16)

the latter equality following from the fact that both I and I· are members of the class .91.
Thus, we readily conclude that

l[a·]-8[a] = fh [W(a·(z»- W(I(z»]dz

= fh [JJi'(a·(z»- JJi'(.(z»- JJi'.(.(z»· [.·(z)-.(z)]] dz,

which by (14), yields (16) to complete the proof.
The above theorem does not directly address the question of existence or uniqueness

of minimizers. It is certain, however, from this theorem that all members of the set of
admissible functions .91 that solve (13) and satisfy (14) (or (15» must have the same
minimum value of 8. We now tum to the existence and uniqueness of such minimizers. In
fact, we shall identify the detailed structure of all minimizing fields in the class.9l.
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We begin with the Euler-Lagrange equation (13), and observe that from it we obtain

which with (7) implies

p(K(Z») 18(=)1 = lei,

r(K(Z» = leI,

ze( -h,h),

ze( -h,h).

(17)

(18)

In addition, by substituting (17) back into (13) we reach

C
8(Z) = iCI K(Z),

and since 8ed, we see that

f
h e fh

8(Z) dz =A = -II K(Z) dz,
-h C -h

and

(19)

(20)

(21)

From this, we see immediately that a minimizer in .511 does not exist if A is such that
IAI/2h ~ p. This follows since the range of values accessible to K(Z), for Ze ( - h, h), is the
half-open interval [O,P), and (21) requires that its meal) value be IAI/2h.

Actually, as remarked earlier, the range of values accessible to the shear K(Z) for any
minimizer, for ze( -h, h), is the set [0, K3] U [K4' P), and this fact will be an important issue
in the remaining arguments. In fact, since (21) requires that the number IAI/2h be the mean
value of any minimizing shear field K(Z), Ze ( - h, h), and because of the above restriction
on the range of K(Z) for ze ( - h, h), and the fact that the shear stress -associated with any
minimizer, r(K(z», must be constant as indicated in (18), it readily follows, basically from
Fig. 2, that

ze(-h,h). (22)

By use of (19) and (20) we then see thatfor any A such that IAI/2he [0, K3] U [K4' p) we have
(uniquely)

A
s(z) = 2h' ze( -h,h). (23)

Because of (4) we see that in this case the centers of rotation for the deformation (I)
all lie on a common straight line which connects the two points (f.(± h),f2(±h), ±h).

Now, let us suppose that IAIJ2h e (K3' K4)' Again IAI/2h must be the mean value of any
minimizing shear field K(Z), ze( -h,h), and the shear stress r(K(z» must be constant
throughout this interval. Since the only range of values open to K(Z), ze(-h,h), is
[0, K3] U ["4' P), and since "3 and "4 are the only two separate points in this set having
common shear stress values, it follows that

zeP,
ze( -h,h)\P,

(24)
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where the set P is a finite union of subintervals of ( - h, h) which must have a total length,
meas(P), that is compatible with (21), Le.

Thus,

(25)

By use of (19) and (20) we then see thatfor any Asuch that IAI/2he(1('3, 1('4) we have

zeP,
(26)

ze( -h,h)\P.

In this case, we see from (1) and (4) that the centers of rotation of this deformation may
lie on any arrangement of continuous piecewise straight line segments which connect the
two points (f1(±h),f2(±h), ±h), and which have the two distinct slopes compatible with
(4), (25) and (26). Because only the total length meas(P) is determined, the set ofminimizers
here is said to be unique up to a rearrangement.

We conclude this paper with the following brief comment concerning the above non­
uniqueness of solution. The question of uniqueness up to a rearrangement seems to arise
only in minimum problems associated with homogeneously deformed homogeneous bodies.
Indeed, examples of inhomogeneous unique minimizers are known (e.g. [7, 8]), and others
can be generated, even when phase boundaries are present.
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